# H<sub>2</sub>O<sub>2</sub>-Induced Inhibition of Photosynthetic O<sub>2</sub> Evolution by *Anabaena variabilis* Cells

V. D. Samuilov<sup>1\*</sup>, K. N. Timofeev<sup>2</sup>, S. V. Sinitsyn<sup>1</sup>, and D. V. Bezryadnov<sup>1</sup>

<sup>1</sup>Department of Physiology of Microorganisms and <sup>2</sup>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119992, Russia; fax: (7-095) 939-3807; E-mail: vds@8.cellimm.bio.msu.ru

> Received February 2, 2004 Revision received March 17, 2004

**Abstract**—Hydrogen peroxide inhibits photosynthetic  $O_2$  evolution. It has been shown that  $H_2O_2$  destroys the function of the oxygen-evolving complex (OEC) in some chloroplast and Photosystem (PS) II preparations causing release of manganese from the OEC. In other preparations,  $H_2O_2$  did not cause or caused only insignificant release of manganese. In this work, we tested the effect of  $H_2O_2$  on the photosynthetic electron transfer and the state of OEC manganese in a native system (intact cells of the cyanobacterium *Anabaena variabilis*). According to EPR spectroscopy data,  $H_2O_2$  caused an increase in the level of photooxidation of P700, the reaction centers of PS I, and decreased the rate of their subsequent reduction in the dark by a factor larger than four. Combined effect of  $H_2O_2$ ,  $CN^-$ , and EDTA caused more than eight- to ninefold suppression of the dark reduction of P700<sup>+</sup>. EPR spectroscopy revealed that the content of free (or loosely bound)  $Mn^{2+}$  in washed cyanobacterial cells was ~20% of the total manganese pool. This content remained unchanged upon the addition of  $CN^-$  and increased to 25-30% after addition of  $H_2O_2$ . The content of the total manganese decreased to 35% after the treatment of the cells with EDTA. Incubation of cells with  $H_2O_2$  for 2 h had no effect on the absorption spectra of the photosynthetic pigments. More prolonged incubation with  $H_2O_2$  (20 h) brought about degradation of phycobilins and chlorophyll a and lysis of cells. Thus,  $H_2O_2$  causes extraction of manganese from cyanobacterial cells, inhibits the OEC activity and photosynthetic electron transfer, and leads to the destruction of the photosynthetic apparatus.  $H_2O_2$  is unable to serve as a physiological electron donor in photosynthesis.

Key words: photosynthesis, photosynthetic oxygen, oxygen-evolving complex, Photosystem II, Photosystem I, hydrogen peroxide, manganese, cyanobacteria, Anabaena variabilis

In oxygenic photosynthesis, water is oxidized by the oxygen-evolving complex (OEC), whose catalytic center contains a number of inorganic components denoted collectively as  $Mn_4O_xCa_1Cl_y$  (see [1, 2] for review). An oxygen molecule evolves as a result of the light-dependent four-electron oxidation of two  $H_2O$  molecules. Bicarbonate was suggested to play a key role in the process of formation of the catalytic center of the OEC [2]. According to the results of thermodynamic calculations, in oxygenic photosynthesis  $HCO_3^-$  is a more effective electron donor than water [3, 4]: values of free energy of oxidation of  $H_2O$  and  $HCO_3^-$  with evolution of

*Abbreviations*: BQ) *p*-benzoquinone; DCMU) 3(3',4'-dichlorophenyl)-1,1-dimethylurea; EDTA) ethylenediaminete-traacetate; FeCy) potassium ferricyanide; OEC) oxygen-evolving complex; PS) photosystem; P680 and P700) reaction centers of PS II and PS I, respectively.

 $0.5 \text{ mol } O_2 \text{ are } 37.3 \text{ and } 24.8 \text{ kcal/mol, respectively } [4].$ Cells of algae and cyanobacteria, isolated chloroplasts, and chloroplast thylakoids incubated in water containing <sup>18</sup>O-labeled bicarbonate under exposure to light evolve oxygen enriched with <sup>18</sup>O [3]. Enrichment with <sup>18</sup>O<sub>2</sub> was observed in experiments with cells of cyanobacteria and isolated thylakoids of chloroplasts depleted of carboanhydrase activity [3]. Carboanhydrase catalyzes the reaction  $CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+$ , which gives rise to oxygen exchange between  $CO_2$  and  $H_2O$  ( $C^{18}O_2 + H_2O \rightleftharpoons CO_2 +$  $H_2^{18}O$ ). As a result, exogenous  $HC^{18}O_3^-$  is converted into  $HCO_3^-$  and  $H_2^{18}O$ . The resulting  $H_2^{18}O$ , whose amount is limited by the amount of HC<sup>18</sup>O<sub>3</sub> added to the system, is diluted in the ocean of H<sub>2</sub>O. Therefore, it is impossible to demonstrate evolution of <sup>18</sup>O<sub>2</sub> from HC<sup>18</sup>O<sub>3</sub> using preparations with active carboanhydrase. Because this could be the case in experiments reported in [5], these data should not be regarded as a counterargument against the hypothesis of the role of bicarbonate.

<sup>\*</sup> To whom correspondence should be addressed.

Hydrogen peroxide is an intermediate product of water oxidation regardless of the nature of the electron donor:

$$2H_2O \xrightarrow{-2e^-} 2OH \cdot \longrightarrow H_2O_2 \longrightarrow O_2 + 2e^- + 2H^+, \qquad (1)$$

$$2H_{2}O + 2CO_{2} \xrightarrow{-2H^{+}} 2HCO_{3}^{-} \xrightarrow{-2e^{-}} 2HCO_{3}^{*} \longrightarrow$$

$$\longrightarrow HOOC-O-O-COOH \xrightarrow{-2CO_{2}}$$

$$\longrightarrow H_{2}O_{2} \longrightarrow O_{2} + 2e^{-} + 2H^{+}, \qquad (2)$$

where OH',  $H_2O_2$ , HCO'<sub>3</sub>, and HOOC-O-O-COOH are the bound forms of the product of intermediate oxidation. Values E'<sub>0</sub> of OH'/ $H_2O$  and HCO'<sub>3</sub>/HCO'<sub>3</sub> (at pH 7 bicarbonate radical is in the form CO'<sub>3</sub> [6]) are 2.31 [7] and 1.59 V [8], respectively.

It follows from Eq. (2) that oxidation of bicarbonate, which is produced from  $CO_2$  and  $H_2O$ , gives rise to formation of  $H_2O_2$  and regeneration of  $CO_2$ . In other words, in this case, like in the case described by Eq. (1), water is an actual electron donor for PS II. However, this water is bound to  $CO_2$ , and  $CO_2$  plays a catalytic role in water oxidation.

Although the OEC mediates light-induced generation of  $H_2O_2$  both in free and bound forms [9, 10], the rate of accumulation of  $H_2O_2$  is insignificant [11]. Isolated thylakoids of chloroplasts depleted of  $Cl^-$  are able to catalyze DCMU-sensitive oxidation of  $H_2O_2$  but not  $H_2O$  [12]. It was suggested in the literature that at the initial stages of evolution of photosynthesis hydrogen peroxide played the role of electron donor for PS II. In other words,  $H_2O_2$  was suggested to be a functional precursor of  $H_2O$  ([13], see [14, 15] for review). Values  $E_0'$  for  $O_2/H_2O_2$  and  $O_2/H_2O$  are 0.27 and 0.82 V, respectively.

Oxidation of  $H_2O$  proceeds in four one-electron stages and gives rise to successive accumulation of oxidative equivalents in the Mn-cluster of the OEC [14, 15]. Therefore, there are five redox states of the Mn-cluster of OEC, which are denoted as  $S_0$ - $S_4$ . States  $S_0$  and  $S_1$  are stable in the dark. The  $S_1/S_0$  ratio in samples preincubated in the dark is 3-4. Therefore, under conditions of pulse photoactivation, when each light flash induces single turnover of P680, the maximum yield of the  $O_2$  evolution from  $H_2O$  is observed per each third light pulse.

The maximum yield of the  $O_2$  evolution induced by exposure of chloroplasts preincubated in the dark with  $H_2O_2$  to pulse photoactivation is per the fifth rather than the third light pulse [16, 17]. This result was interpreted as an indication of the dark transition of Mn-cluster from state  $S_1$  to a specific state  $S_{-1}$ . State  $S_{-1}$  is formed as a result of two-electron reduction of the Mn-cluster in state

 $S_1$  by hydrogen peroxide in a reaction associated with  $O_2$  evolution (see Eq. (3) below).

A single light pulse induces the transition of the Mncluster of the OEC from state  $S_1$  to state  $S_2$ , which relaxes to state  $S_0$  in the presence of  $H_2O_2$  [16]. Transitions  $S_2 \rightarrow S_0$  and  $S_1 \rightarrow S_{-1}$  are coupled to the dark reaction  $H_2O_2 \rightarrow O_2 + 2e^- + 2H^+$ . It was demonstrated in experiments with  $H_2^{18}O_2$  that the whole body of  $O_2$  evolved from  $H_2O_2$  [17].

The presence of heme catalase associated with PS II makes it methodologically difficult to study the processes of production and degradation of  $H_2O_2$  in photosynthesis [18]. Therefore,  $O_2$  evolution by preparations incubated with  $H_2O_2$  can largely be attributed to the catalase reaction:  $H_2O_2 \rightarrow O_2 + 2H_2O$ . This suggestion was confirmed by the results reported in [11]. Particles of PS II depleted of heme catalase demonstrated high rate of  $O_2$  evolution but only 0.02% of the initial rate of  $O_2$  evolution from  $H_2O_2$ . Therefore, the role of the OEC reactions  $S_1 \rightarrow S_{-1}$  and  $S_2 \rightarrow S_0$  in oxidation of  $H_2O_2$  in PS II is insignificant, and degradation of  $H_2O_2$  is mainly catalyzed by catalase.

It was suggested in [11] that light-induced oxidation of  $H_2O_2$  in catalase-free subchloroplast particles was due to Mn-dependent (Eqs. (3) and (4)) and Mn-independent (Eqs. (5) and (6)) reactions:

$$H_2O_2 + S_1 \rightarrow O_2 + S_{-1} + 2H^+,$$
 (3)

$$S_{-1} + 2h\nu \rightarrow S_1 + 2e^-,$$
 (4)

$$H_2O_2 + Y_7 \rightarrow O_7^- + 2H^+ + Y_7,$$
 (5)

$$2O_{\overline{2}}^{-} + 2H^{+} \rightarrow H_{2}O_{2} + O_{2},$$
 (6)

where  $Y_z$  is the tyrosine-161 residue in polypeptide D1 of PS II, which becomes accessible to  $H_2O_2$  after removal of Mn;  $Y_z^*$  is the photooxidized form of  $Y_z$ .

An insignificant rate of  $H_2O_2$  degradation in the dark with formation of  $O_2$  in catalase-free subchloroplast particles can be explained by catalytic activity of admixtures of transition metals (Fe, Cu, Mn) or nonheme iron of the electron acceptor complex of PS II [11].

Within the framework of the concept of the role of  $H_2O_2$  as an electron donor, it is safe to suggest that photosynthetic objects are resistant to  $H_2O_2$  and even can be stimulated by  $H_2O_2$ . However, the addition of  $H_2O_2$  to catalase-free subchloroplast particles caused irreversible inhibition of  $O_2$  evolution, the extent of the inhibition being larger than 50% at  $H_2O_2$  concentration 0.25 mM [11]. The inhibition effect was exerted by endogenous  $H_2O_2$  generated both in the electron donor and in the electron acceptor (as a result of reduction of  $O_2$  by the secondary plastoquinone  $O_2$ 0 sides of PS II in isolated thy-lakoids [19]. Removal of  $O_2$ 1 or addition of  $O_2$ 2 caused an increase, whereas the addition of catalase caused a decrease in the inhibition effect of endogenous  $O_2$ 2.

A detrimental effect of H<sub>2</sub>O<sub>2</sub> was also observed in native systems: H<sub>2</sub>O<sub>2</sub> inhibited growth of cyanobacteria under conditions of dialysis cultivation even in concentrations as low as  $10^{-5}$ - $10^{-4}$  M [20]. The effect of H<sub>2</sub>O<sub>2</sub> on the processes of photosynthetic evolution of O<sub>2</sub> and photosynthetic electron transport was studied in Anabaena variabilis and Anacystis nidulans cells [21]. H<sub>2</sub>O<sub>2</sub> inhibited evolution of  $O_2$  in the Hill reaction with p-benzoquinone (BQ) and ferricyanide (FeCy) as electron acceptors. However, the fact of inhibition of O<sub>2</sub> evolution itself does not mean that oxidation of H<sub>2</sub>O<sub>2</sub> is terminated. The process may take place without evolution of  $O_2$ , being stopped at an intermediate stage of formation of H<sub>2</sub>O<sub>2</sub> [22]. For example, the amount of 2,6-dichlorophenolindophenol, phenyl-BQ, or phenyl-BQ + FeCy photoreduced in Hill reaction (as calculated per electron equivalent) was more than 1.5 times larger than the amount of O<sub>2</sub> evolved by the membrane particles of PS II [22]. However, this difference was eliminated after addition of catalase. Therefore, a significant fraction of the electron flow through PS II was due to formation of H<sub>2</sub>O<sub>2</sub> rather than evolution of  $O_2$ .

It was found in our experiments [21] that  $H_2O_2$  inhibited evolution of  $O_2$  and the associated process of BQ + FeCy photoreduction in the Hill reaction. These data indicate that the inhibition effect of  $H_2O_2$  is targeted at the initial stages leading to formation of  $H_2O_2$ . If  $H_2O_2$  were unable to inhibit these stages, the process of BQ + FeCy photoreduction would not be inhibited. The value  $I_{50}$  for  $H_2O_2$  was  $\sim 0.75$  mM.

Treatment of Cl<sup>-</sup>-deficient thylakoids with H<sub>2</sub>O<sub>2</sub> induced release of Mn from the OEC [23]. However, in catalase-free Cl<sup>-</sup>-containing preparations, the rate of the process of the H<sub>2</sub>O<sub>2</sub> induced release of Mn from OEC was insignificant even in the presence of 120 mM H<sub>2</sub>O<sub>2</sub> [11].  $H_2O_2$  in concentration 130 mM was unable to extract Mn from PS II particles devoid of water-soluble polypeptides with molecular weight 17 and 24 kD [24]. These data reported in [11, 24] are inconsistent with the results obtained either in PS II particles devoid of water-soluble polypeptides with molecular weight 17 and 24 kD [25] or in Cl<sup>-</sup>-deficient thylakoid membranes [23]. It was shown in [23, 25] that 20 mM H<sub>2</sub>O<sub>2</sub> and some other agents serving as electron donors for PS II (NH2OH, NH2-NH2, Fe<sup>2+</sup>, benzidine, and hydroquinone) were able to reduce Mn incorporated in OEC, thereby causing its extraction. Perhaps, removal of PS II polypeptides of 17 and 24 kD modifies the OEC structure and makes it accessible for H<sub>2</sub>O<sub>2</sub> added in low concentration [26].

It is fairly difficult to draw adequate conclusions on the basis of the results obtained in defective preparations. For example, specific treatment of PS II membrane particles intended to remove catalase and suppress its activity [11] may also eliminate components sensitive to  $H_2O_2$ . Concentrations of  $H_2O_2$  tested in [11] were excessively high and could induce conformational changes and

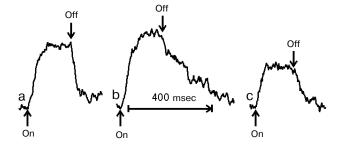
denaturation of proteins, preventing thereby Mn from being released from OEC. This is evidenced by a significant decrease in the sensitivity of PS II to DCMU [11].

Thus, the mechanisms of the inhibition effect of  $H_2O_2$  either on  $O_2$  evolution or on electron transport in oxygenic photosynthesis cannot be deduced from the results obtained in isolated preparations treated by different methods. The goal of this work was to test the effects induced by  $H_2O_2$  on photosynthetic electron transport and state of manganese in the OEC in intact systems (cells of cyanobacteria). In addition to  $H_2O_2$ , we also tested the effects of  $CN^-$ , an inhibitor of such enzymes as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) [27], peroxidases (including ascorbate peroxidase), Cu, Zn-superoxide dismutase [28], cytochrome c oxidase, and heme catalases. The effects of EDTA, a chelator of divalent metal cations (including  $Mn^{2+}$ ), were also tested.

#### MATERIALS AND METHODS

Cells of *Anabaena variabilis* Kütz No. 458 were grown under continuous light ( $\sim 1000 \text{ lx}$ ) as a batch culture on mineral medium BG-11 [29] as described elsewhere [30]. Cells of three- to five-day-old cultures in the exponential stage of growth were used. Cells were sedimented by centrifugation at 2000g, washed three times with 10 mM Hepes-NaOH-buffer solution (pH 8.0) containing 25 mM KCl, and suspended in the same buffer solution. In experiments with EDTA treatment, after washed cells had been incubated for 10 min in buffer solution containing 5 mM Na<sub>2</sub>EDTA, cells were again washed three times with buffer solution to remove EDTA.

Concentration of chlorophyll a in cells of cyanobacteria was measured using extinction coefficient at 663 nm in 80% acetone (75.05 mM<sup>-1</sup>·cm<sup>-1</sup>) [31]. Concentration of  $H_2O_2$  was measured the using extinction coefficient at 240 nm in aqueous solution (43.6 M<sup>-1</sup>·cm<sup>-1</sup>) [32]. Optical spectra of cell suspensions were measured using a Hitachi-2000 spectrophotometer (Japan).


EPR spectra were measured at room temperature using an RE-1307 spectrometer. Cell suspension containing 1 mg/ml chlorophyll a in 10 mM Hepes-NaOHbuffer (pH 8.0) with 25 mM KCl was filled in a flat quartz cuvette (volume, 100 µl; optical path, 0.02 cm). EPR signal of reaction centers P700 was induced by rectangular pulses of light (duration, 0.2 sec) applied directly to the cavity of the EPR spectrometer from an incandescent lamp (power, 300 W; light flux, 2000  $\mu$ E/m<sup>2</sup> per sec). The following settings of the EPR signal detection were used: microwave power, 20 mW; modulation amplitude, 0.3 mT; modulation frequency, 100 kHz; and detection time constant, 10 µsec. H<sub>2</sub>O<sub>2</sub>, NaCN, and other reagents were added to cell suspension just before EPR signal detection. All EPR records were run in no less than triplicate.

### **RESULTS**

Effect of H<sub>2</sub>O<sub>2</sub> and other agents on the EPR signal of reaction centers of PS I in A. variabilis cells. The lightinduced EPR signal with g-factor 2.0026 attributed to photooxidation of P700, the primary electron donor of PS I, in A. variabilis cells is shown in Fig. 1a. A steadystate level of P700<sup>+</sup> is established as a result of photoactivation. In the dark P700<sup>+</sup> is reduced, and the EPR signal decays with half-time  $(t_{1/2})$  30 msec (Table 1).  $H_2O_2$ induced an increase in the amplitude of the light-induced EPR signal and slowed down its further relaxation (Fig. 1b and Table 1). Because the results shown in Fig. 1 and Table 1 were obtained in a thick suspension of cells (chlorophyll concentration, 1 mg/ml, which was 100-150 times higher than chlorophyll concentration in spectrophotometric and oximetric experiments), concentrations of H<sub>2</sub>O<sub>2</sub> in EPR measurements were increased correspondingly. Although CN<sup>-</sup> caused a decrease in the amplitude of the light-induced EPR signal of P700<sup>+</sup>, it had no effect on the kinetics of its dark decay (Fig. 1c and Table 1). The addition of EDTA had no effect on the kinetics of the redox changes of P700. The effect exerted by  $H_2O_2 + CN^-$  was similar to the effect of  $H_2O_2$ .

**Table 1.** Amplitude of EPR signal of reaction center P700 and halftime  $t_{1/2}$  of its post-illumination reduction in the dark in *A. variabilis* cells before and after treatment with EDTA

| Additive                                         | Concentration, mM | Ampli-<br>tude of<br>EPR sig-<br>nal, % | Time $t_{1/2}$ of dark relaxation of EPR signal, msec |  |  |  |  |
|--------------------------------------------------|-------------------|-----------------------------------------|-------------------------------------------------------|--|--|--|--|
| Before EDTA treatment                            |                   |                                         |                                                       |  |  |  |  |
| Control                                          | _                 | 100                                     | 30                                                    |  |  |  |  |
| $H_2O_2$                                         | 25                | 120                                     | 130                                                   |  |  |  |  |
| NaCN                                             | 1                 | 70                                      | 30                                                    |  |  |  |  |
| EDTA                                             | 10                | 100                                     | 30                                                    |  |  |  |  |
| $H_2O_2 + NaCN$                                  | 100 + 1           | 120                                     | 150                                                   |  |  |  |  |
| H <sub>2</sub> O <sub>2</sub> + NaCN +<br>+ EDTA | 100 + 1 + 10      | 110                                     | 270                                                   |  |  |  |  |
| After EDTA treatment                             |                   |                                         |                                                       |  |  |  |  |
| Control                                          | _                 | 100                                     | 50                                                    |  |  |  |  |
| $H_2O_2$                                         | 25                | 100                                     | 125                                                   |  |  |  |  |
| NaCN                                             | 1                 | 70                                      | 50                                                    |  |  |  |  |
| H <sub>2</sub> O <sub>2</sub> + NaCN +<br>+ EDTA | 100 + 1 + 10      | 100                                     | 400                                                   |  |  |  |  |
|                                                  |                   |                                         |                                                       |  |  |  |  |



**Fig. 1.** Effect of  $H_2O_2$  and NaCN on the photoinduced EPR signal of reaction center P700 in *A. variabilis* cells: a) control without addition; b) 25 mM  $H_2O_2$ ; c) 1 mM NaCN. "On" and "Off" show actinic light on and off, respectively.

Combination  $H_2O_2 + CN^- + EDTA$  caused a significant increase in the characteristic time of the dark reduction of the photoinduced P700<sup>+</sup> (Table 1).

In *A. variabilis* cells treated with EDTA, the amplitude of the EPR signal was maintained at an invariable level, whereas the rate of dark reduction of P700<sup>+</sup> decreased (Table 1, compare controls before and after treatment with EDTA). Although  $H_2O_2$  had no effect on the amplitude of the photoinduced signal of P700<sup>+</sup>, it decreased the rate of its dark reduction. The effects induced by  $CN^-$  before and after treatment with EDTA were similar to each other. Cells treated with EDTA combination  $H_2O_2 + CN^- + EDTA$  showed an even larger decrease in the rate of the dark relaxation of the EPR signal than without EDTA treatment (Table 1).

Effect of H<sub>2</sub>O<sub>2</sub> and other agents on the state of manganese in *A. variabilis* cells. The EPR spectrum of Mn<sup>2+</sup> ions in aqueous solutions contains six bands. The EPR signal disappeared in the presence of EDTA, a complex-producing agent, and its amplitude decreased in the presence of CN<sup>-</sup> (not shown). Bound Mn gives no such typical six-band EPR spectrum. Washed cells of *A. variabilis* contain unbound (or, perhaps, loosely bound) Mn<sup>2+</sup> (Fig. 2a). Bound manganese is extracted as a result of treatment of thylakoids with HCl [23, 33]. The addition of HCl to cell suspension caused a significant increase in the EPR signal amplitude, which was due to release of bound Mn (Fig. 2c).

All of the released manganese was in divalent form: it is well known from the chemistry of transition elements that tri-, quadro-, hexa-, and heptavalent manganese is readily reduced by HCl to  $Mn^{2+}$ . For example, pyrolusite, the most widespread in the nature water-insoluble manganese ore ( $MnO_2$ ), in the presence of HCl is converted into a soluble form being reduced to  $Mn^{2+}$ :

$$MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O.$$
 (7)

It should be noted that Mn<sup>2+</sup> is stable in acid solutions.

Unbound Mn<sup>2+</sup> in *A. variabilis* cells accounted for 20% of the total amount of cell manganese (Figs. 2a and

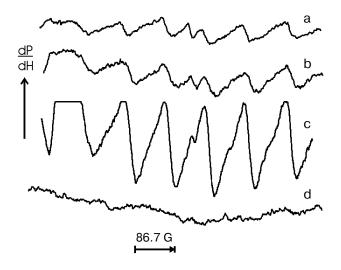



Fig. 2. EPR spectra of  $Mn^{2+}$  in A. variabilis cell suspension: a) control; b) 40 mM  $H_2O_2$ ; c) 100 mM HCl; d) cells preincubated with 5 mM EDTA and washed three times to remove EDTA.

2c, Table 2). The content of free  $Mn^{2^+}$  in cells remained unchanged after addition of  $CN^-$  (Table 2) and increased to 25% or even 30% of total cell manganese after addition of 40 or 200 mM  $H_2O_2$ , respectively (Fig. 2b and Table 2), and significantly decreased after cell treatment with EDTA (Fig. 2d and Table 2, last column). Treatment of cells with EDTA caused an increase in the rate of the  $H_2O_2$ -induced release of manganese. The level of released  $Mn^{2^+}$  decreased after addition of  $H_2O_2 + CN^-$  to EDTA-treated cells (Table 2).

Effect of  $H_2O_2$  and  $CN^-$  on absorption spectra of A. variabilis cells. Optical absorption spectra of A. variabilis cell suspension are shown in Fig. 3. These spectra contained bands of chlorophyll a and carotenoids within the spectral range 400-550 nm, bands of phycobilins with maximums at 580 (phycoerythrin) and 630 nm (phycocyanin), and chlorophyll a at 680 nm. Dark incubation of cells with H<sub>2</sub>O<sub>2</sub> and CN<sup>-</sup> (this agent was added to inhibit catalase and peroxidase, H2O2-degrading heme-containing enzymes) for 2 h had no effect on the absorption spectra (Fig. 3). Prolonged incubation of cells (20 h) with  $H_2O_2$  gave rise to a progressive decrease in the optical density of phycobilins, a lesser decrease in the optical density of chlorophyll a, and decrease in the intensity of the cell suspension light scattering (Table 3). Perhaps, these effects were due degradation of pigments and lysis of cells.

## **DISCUSSION**

Both photosynthetic and respiratory electron transport is sustained in the thylakoid membranes of cyanobacteria (Fig. 4). Photosynthetic and respiratory electron transport chains interact with each other by sharing chain components [34-38]: the membrane pool of

plastoquinone, cytochrome  $b_6 f$  complex, and plastocyanin (or cytochrome  $c_6$  in case of copper deficiency in the medium).

On one hand, plastoquinone is an electron acceptor for PS II, type I NAD(P)H-dehydrogenase (NDH-1), and succinate dehydrogenase. On the other hand, plastoquinone is an electron donor for PS I, cytochrome  $aa_3$  oxidase, and alternative oxidases. Quinol oxidase resistant to CN<sup>-</sup> and sensitive to benzylhydroxamate [38-41] and CN<sup>-</sup>-sensitive quinol oxidase bd [42] are alternative oxidases in cyanobacteria. PS I complexes mediate both linear (noncyclic and pseudocyclic transport, in which  $O_2$  evolution by PS II is compensated by  $O_2$  uptake in PS I associated with formation of  $O_2$  (water—water cycle [43])) and cyclic electron transport, in which a fraction of linear chain is closed as a cycle through NDH-1. The existence of cyclic electron transport was demonstrated in

**Table 2.** Extraction of Mn<sup>2+</sup> from *A. variabilis* cells before and after treatment with EDTA. Extracted Mn<sup>2+</sup> was determined by the amplitude of the fifth band of the EPR spectrum (bands were numbered starting from the lowest value of the constant magnetic field strength)

| Additive              | Concentration,<br>mM | Free Mn <sup>2+</sup> , % | Free Mn <sup>2+</sup> after treatment with EDTA relative to its content before treatment with EDTA, % |  |  |  |  |  |
|-----------------------|----------------------|---------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Before EDTA treatment |                      |                           |                                                                                                       |  |  |  |  |  |
| Control               | _                    | 20                        |                                                                                                       |  |  |  |  |  |
| $H_2O_2$              | 40                   | 25                        |                                                                                                       |  |  |  |  |  |
| NaCN                  | 3                    | 20                        |                                                                                                       |  |  |  |  |  |
| $H_2O_2 + NaCN$       | 40 + 3               | 25                        |                                                                                                       |  |  |  |  |  |
| $H_2O_2$              | 200                  | 30                        |                                                                                                       |  |  |  |  |  |
| $H_2O_2 + NaCN$       | 200 + 3              | 30                        |                                                                                                       |  |  |  |  |  |
| HCl                   | 100                  | 100                       |                                                                                                       |  |  |  |  |  |
| After EDTA treatment  |                      |                           |                                                                                                       |  |  |  |  |  |
| Control               | _                    | 5                         |                                                                                                       |  |  |  |  |  |
| $H_2O_2$              | 40                   | 35                        |                                                                                                       |  |  |  |  |  |
| NaCN                  | 3                    | 5                         |                                                                                                       |  |  |  |  |  |
| $H_2O_2 + NaCN$       | 40 + 3               | 25                        |                                                                                                       |  |  |  |  |  |
| $H_2O_2$              | 200                  | 45                        |                                                                                                       |  |  |  |  |  |
| $H_2O_2 + NaCN$       | 200 + 3              | 25                        |                                                                                                       |  |  |  |  |  |
| HCl                   | 100                  | 100                       | 35                                                                                                    |  |  |  |  |  |

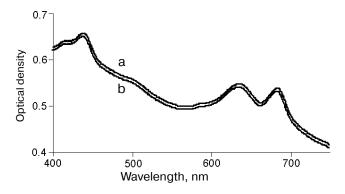



Fig. 3. Absorption spectra of A. variabilis cells: a) control; b) after 2 h of incubation in the dark with 1 mM NaCN and 10 mM  $H_2O_2$ .

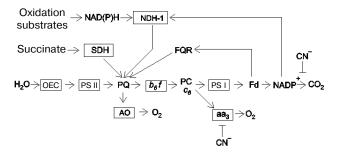



Fig. 4. Interaction between photosynthetic and respiratory electron transport chains in thylakoid membranes of cyanobacteria. Explanations are given in text. Symbols: AO) alternative oxidase; OEC) oxygen-evolving complex; PS I and PS II) photosystems I and II, respectively;  $aa_3$ ) cytochrome oxidase  $aa_3$ ;  $b_6f$ ) cytochrome  $b_6f$  complex; Fd) ferredoxin; FQR) ferredoxin:plastoquinone reductase; NDH-1) type I NAD(P)H dehydrogenase; PQ) plastoquinone.

thylakoids of cyanobacteria [44, 45] and chloroplasts [46]. The electron transport chain can also be closed through ferredoxin:plastoquinone oxidoreductase. Perhaps there are other variants of cyclization of electron flow (see [47] for review).

There is no consensus about the ratio of linear and cyclic electron transport rates in thylakoid membranes. This is due to methodological problems in measurement of cyclic flow rate. Results obtained in three species of cyanobacteria, including *Anacystis nidulans* (*Synechococcus* sp. PCC 6301), which is metabolically close to *A. variabilis*, revealed that under physiological light intensities the fraction of cyclic electron transport was insignificant [48]. In *Synechococcus* sp. PCC 7002 the rate of cyclic electron transport was estimated to be ~3% of the rate of the linear transport [49]. However, results obtained in spinach leaves preincubated in the dark showed that within the first few seconds of illumination, the fractions of linear and cyclic electron transport were approximately equal to one another [50]. After that, the contribution

of the cyclic branch of electron transport declines. It was suggested in [50], that the cyclic chain was involved in photosynthesis induction, providing synthesis of ATP required for the Calvin cycle.

The cyanobacterium *A. variabilis* is an obligate photolithoautotrophic organism. The rate of the CO<sub>2</sub>-dependent linear photosynthetic electron transport in cells of this cyanobacterium is three to six times larger than the rate of dark respiration [38, 51]. Therefore, the amplitude of photooxidation of the reaction centers P700 and rate of their post-illumination reduction in *A. variabilis* cells are mainly determined by the processes in the photosynthetic chain.

The addition of H<sub>2</sub>O<sub>2</sub> caused an increase in the amplitude of photooxidation of P700 and a more than fourfold decrease in the rate of the post-illumination reduction in the dark (Fig. 1, Table 1). This result is evidence that H<sub>2</sub>O<sub>2</sub> inhibits the processes of reduction of the components of the electron-donor branch of PS I. This conclusion is consistent with inhibition of electron transfer from water to BQ + FeCy and concomitant O<sub>2</sub> evolution in the Hill reaction in cells treated with H<sub>2</sub>O<sub>2</sub> [21]. The cyanide-induced inhibition of the flux of reducing equivalents to CO<sub>2</sub> through ribulose-1,5-bisphosphate carboxylase/oxygenase [27] gave rise to deficiency of NADP<sup>+</sup>, the terminal electron acceptor in the linear electron transport chain, and decreased the amplitude of the photooxidation of P700 (Table 1). The value of  $t_{1/2}$  of the process of dark reduction of P700<sup>+</sup> in this case was indistinguishable from the control. This indicated that CN<sup>-</sup>, an inhibitor of the respiratory chain, had no effect on the redox balance of the components of electron donor segment of PS I in A. variabilis cells.

It is well known that being applied in high concentration,  $\rm CN^-$  inhibits plastocyanin (30 mM  $\rm CN^-$  [52]), induces extraction of manganese and copper from chloroplasts (50 mM  $\rm CN^-$  [53]), and binds to the nonheme iron of the electron acceptor branch of PS II (50 mM  $\rm CN^-$ , saturation at 240-360 mM  $\rm CN^-$  [54]). It is

**Table 3.**  $\rm H_2O_2$ -Induced degradation of phycocyanin ( $\Delta A_{630-720~\rm nm}$ ) and chlorophyll a ( $\Delta A_{680-720~\rm nm}$ ) and decrease in light scattering ( $A_{720~\rm nm}$ ) in A. *variabilis* cell suspension (cells were incubated in the dark in the presence of  $\rm H_2O_2$  for 20 h)

| H <sub>2</sub> O <sub>2</sub> , mM | $\Delta A_{630-720 \text{ nm}}$ | $\Delta A_{680-720~\mathrm{nm}}$ | $A_{720~\mathrm{nm}}$ |
|------------------------------------|---------------------------------|----------------------------------|-----------------------|
| 0                                  | 0.18                            | 0.17                             | 0.67                  |
| 1                                  | 0.11                            | 0.12                             | 0.38                  |
| 10                                 | 0.08                            | 0.12                             | 0.29                  |
| 100                                | 0.03                            | 0.08                             | 0.10                  |
|                                    |                                 |                                  |                       |

obvious that none of these effects was observed in our experiments because the concentration of  $CN^-$  used in these experiments was 1 mM.

Neither the level of photooxidation of P700 nor the rate of the post-illumination reduction of P700<sup>+</sup> were changed in the presence of EDTA, a well-known complexing agent of divalent metal cations (Table 1). These findings are consistent with the results on two pools of Mn in *Synechococcus* sp. PCC 6803 cells: pool A, which was associated with the fraction of the outer membranes of this gram-negative bacterium, and pool B, which was associated with the fraction of the thylakoid and cytoplasmic membranes [55]. Pool A (~97.6% total Mn) is extracted with EDTA, whereas pool B (~2.4% total Mn) is conserved in cells in a bound state after their treatment with EDTA. Perhaps this pool provides activity of the OEC.

Nevertheless, EDTA added in combination with  $\rm H_2O_2$  and  $\rm CN^-$  caused a significant decrease (by a factor of nine relative to control) in the half-time of P700<sup>+</sup> reduction (Table 1). Under conditions in which catalase-and peroxidase-catalyzed degradation of added  $\rm H_2O_2$  is suppressed by  $\rm CN^-$ , the OEC manganese is thought to be reduced by hydrogen peroxide to  $\rm Mn^{2+}$ , which is more loosely bound to OEC than  $\rm Mn^{3+}$  and  $\rm Mn^{4+}$  [25]. Under these conditions equilibrium between pools A and B is shifted toward manganese transition from pool B to pool A and OEC activity was reduced causing a significant decrease in the rate of reduction of P700<sup>+</sup>.

EDTA itself causes a decrease in the rate of dark reduction of P700<sup>+</sup> (Table 1, compare values measured before and after treatment of cells with EDTA). In cells treated with EDTA,  $H_2O_2$  caused a 2.5-fold (125 : 50 = 2.5) decrease in the rate of reduction of P700<sup>+</sup>. However, the total decrease was equal to  $(125 : 50) \cdot (50 : 30)$ , i.e., 4.2 times, which corresponded to an approximately 4.3-fold  $H_2O_2$ -induced decrease (130 : 30  $\approx$  4.3) in the rate of the process in cells untreated with EDTA (Table 1). A significant decrease in the rate of reduction of P700<sup>+</sup> (decrease in  $t_{1/2}$  to 400 msec) was observed in cells treated with EDTA and exposed to a combination of  $H_2O_2$ ,  $CN^-$ , and EDTA.

Treatment of cells with EDTA caused a decrease in the amount of manganese extractable with 100 mM HCl to 35% (Table 2). The content of free (or loosely bound)  $\rm Mn^{2+}$  in cyanobacterial cells before and after treatment with EDTA was 20 and 5% of the total manganese pool, respectively. These values increased to 25 and 35%, respectively, after exposure to 40 mM  $\rm H_2O_2$  or to 30 and 45%, respectively, after exposure to 200 mM  $\rm H_2O_2$ . The addition of  $\rm CN^-$  (3 mM) had no effect on the efficiency of the manganese extraction by hydrogen peroxide.

The inhibition effect of  $H_2O_2$  was not restricted to OEC alone. In addition to  $H_2O$ , PS II is able to oxidize some other compounds (see [21, 56] and references therein). Oxidation of some of these compounds (e.g.,  $H_2O_2$  and  $NH_2OH$ ) is mediated by the Mn-cluster of the OEC. Other compounds are oxidized without involvement of the

Mn-cluster of the OEC, for instance such compounds as diphenylcarbazide, tetraphenylboron, and ionol (butylhydroxytoluene) are able to interact directly with component  $Y_{\tau}$ . None of the compounds of the two types supported photoinduced reduction of BQ + FeCy in A. variabilis cells treated with H<sub>2</sub>O<sub>2</sub> [21]. The light-dependent electron transfer from NH<sub>2</sub>OH or diphenylcarbazide to methyl viologen was not supported either. These data are evidence of the H<sub>2</sub>O<sub>2</sub>-induced inhibition of Y<sub>z</sub>. Perhaps, this inhibition is due to the H<sub>2</sub>O<sub>2</sub>-dependent oxidation of tyrosine residues by the mechanism similar to that observed in case of oxidation of phenylpropane derivatives during lignin biosynthesis [57] and further interaction of resulting tyrosine radicals giving rise to dityrosine cross-linking. Possible formation of dityrosine cross-links was described elsewhere [19]. Therefore, it seems fairly improbable that the mechanism of the photoinduced Mn-independent oxidation of  $H_2O_2$  mediated by  $Y_7$  (Eqs. (5) and (6)) are actually found in fact (see [11] for more detail).

More remote aftereffects induced by  $H_2O_2$  include photoinhibition of photosynthesis associated with functional insufficiency of the electron donor branch of PS II [19]. In a long run, this insufficiency results in degradation of photosynthetic pigments, cell lysis (Table 3), and cell death [20]. Phycocyanin capable of neutralizing radicals HO', HO',  $O_2^{-}$ , and peroxynitrite (see [58] and references therein) were subjected to considerable degradation (Table 3). It was shown in experiments with Synechocystis 6803 that H<sub>2</sub>O<sub>2</sub> inhibited reparation of the photoinduced damage of PS II by suppressing protein biosynthesis at the level of translation (including biosynthesis of protein D1, which is a component of the reaction center complex of PS II [59]). Inhibition of reparation of photo-inactivated PS II in Synechocystis 6803 at the level of transcription and translation of genes psbA, which is responsible for biosynthesis of protein D1, can be induced by 0.5-1.0 M NaCl [60]. Salt-induced death of A. variabilis cells occurs by the mechanism of apoptosis: activity of proteases in cells increases, cytoplasm membrane integrity is disrupted, DNA is fragmented, cytoplasm undergoes vacuolization, and at the terminal stage of the process the cell is subjected to autolysis [61]. Cell death with all features inherent in apoptosis was demonstrated in the obligate photolithoautotrophic single-cell green alga Dunaliella tertiolecta exposed to conditions of light deficiency [62].

Thus,  $H_2O_2$  induces extraction of manganese from cyanobacterial cells, degradation of the photosynthetic apparatus, and cell death. These results rule out the hypothesis that  $H_2O_2$  is able to serve as a possible physiological electron donor in photosynthesis [13, 63].

This study was supported by the Russian Foundation for Basic Research (project No. 01-04-48356). We are grateful to T. A. Fedorenko for assistance in reinoculation of *A. variabilis* and preparation of pH buffer solutions.

### **REFERENCES**

- 1. Debus, R. J. (1992) Biochim. Biophys. Acta, 1102, 269-352.
- Ananyev, G. M., Zaltsman, L., Vasko, C., and Dismukes, G. C. (2001) *Biochim. Biophys. Acta*, 1503, 52-68.
- Metzner, H. (1983) in Bioelectrochem. Proc. Course, Vol. 1, N. Y., pp. 51-113.
- Dismukes, G. C., Klimov, V. V., Baranov, S. V., Kozlov, Yu. N., DasGupta, J., and Tyryshkin, A. (2001) *Proc. Natl. Acad. Sci. USA*, 98, 2170-2175.
- Radmer, R., and Ollinger, O. (1980) FEBS Lett., 110, 57-61.
- Bonini, M. G., Radi, R., Ferrer-Sueta, G., Ferreira, A. M. D. C., and Augusto, O. (1999) *J. Biol. Chem.*, 274, 10802-10806.
- 7. Koppenol, W. H. (1994) in *Free Radical Damage and Its Control* (Rice-Evans, C. A., and Burdon, R. H., eds.) Elsevier Sci., pp. 3-24.
- 8. Koppenol, W. H., and Rush, J. D. (1987) *J. Phys. Chem.*, **91**, 4429-4430.
- 9. Ananyev, G., Wydrzynski, T., Renger, G., and Klimov, V. V. (1992) *Biochim. Biophys. Acta*, **1100**, 303-311.
- Klimov, V. V., Ananyev, G., Zastryzhnaya, O., Wydryzynski, T., and Renger, G. (1993) *Photosynth. Res.*, 38, 409-416.
- Sheptovitsky, Y. G., and Brudvig, G. W. (1998) Biochemistry, 37, 5052-5059.
- Kelly, P., and Izawa, S. (1978) Biochim. Biophys. Acta., 502, 198-210.
- 13. Bader, K. P. (1994) Biochim. Biophys. Acta, 1188, 213-219.
- Samuilov, V. D. (1997) Biochemistry (Moscow), 62, 451-454.
- 15. Blankenship, R. E., and Hartman, H. (1998) *Trends Biochem. Sci.*, **23**, 94-97.
- 16. Velthuys, B., and Kok, B. (1978) *Biochim. Biophys. Acta*, **502**, 211-221.
- 17. Mano, J., Takahashi, M., and Asada, K. (1987) *Biochemistry*, **26**, 2495-2501.
- 18. Sheptovitsky, Y. G., and Brudvig, G. W. (1996) *Biochemistry*, **35**, 16255-16263.
- Bradley, R. L., Long, K. M., and Frasch, W. D. (1991) FEBS Lett., 286, 209-213.
- Samuilov, V. D., Bezryadnov, D. V., Gusev, M. V., Kitashov, A. V., and Fedorenko, T. A. (1999) *Biochemistry (Moscow)*, 64, 47-53.
- Samuilov, V. D., Bezryadnov, D. V., Gusev, M. V., Kitashov, A. V., and Fedorenko, T. A. (2001) *Biochemistry (Moscow)*, 66, 640-645.
- Wydrzynski, T., Ångstrom, J., and Vänngard, T. (1989) Biochim. Biophys. Acta, 973, 23-28.
- 23. Sandusky, P. O., and Yocum, C. F. (1988) *Biochim. Biophys. Acta*, **936**, 149-156.
- 24. Frasch, W. D., Mei, R., and Sanders, M. A. (1988) *Biochemistry*, **27**, 3715-3719.
- 25. Ghanotakis, D. F., Topper, J. N., and Yocum, C. F. (1984) *Biochim. Biophys. Acta*, **767**, 524-531.
- Schröder, W. P., and Åkerlund, H.-E. (1986) Biochim. Biophys. Acta. 848, 359-363.
- 27. Ishida, H., Shimizu, S., Makino, A., and Mae, T. (1998) *Planta*, **204**, 305-309.
- 28. Asada, K., and Badger, M. R. (1984) *Plant Cell Physiol.*, **25**, 1169-1179.
- Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979) J. Gen. Microbiol., 111, 1-61.
- Barsky, E. L., Gusev, M. V., Kondrashin, A. A., and Samuilov, V. D. (1982) *Biochim. Biophys. Acta*, **680**, 304-309.

- Dawson, R., Elliott, D., Elliott, W., and Jones, K. (1991)
   Handbook of Biochemist [Russian translation], Mir, Moscow.
- 32. Bielski, B. H. J., and Allen, A. O. (1977) *J. Phys. Chem.*, **81**, 1048-1050.
- Yocum, C., Yerkes, C. T., Blankenship, R., Sharp, R. R., and Babcock, G. T. (1981) *Proc. Natl. Acad. Sci. USA*, 78, 7507-7511.
- 34. Hirano, M., Satoh, K., and Katoh, S. (1980) *Photosynth. Res.*, **1**, 149-162.
- 35. Lockau, W. (1981) Arch. Microbiol., 128, 336-340.
- 36. Peschek, G. A., and Schmetterer, F. (1982) *Biochem. Biophys. Res. Commun.*, **108**, 1188-1195.
- 37. Aples, I., Stürzl, E., Scherer, S., and Böger, P. (1984) *Z. Naturforsch.*, C 39, 623-625.
- 38. Abdourashitova, F. D., Barsky, E. L., Gusev, M. V., and Samuilov, V. D. (1985) *Planta*, **166**, 182-186.
- 39. Rubin, P. M., Zetooney, E., and McGowan, R. E. (1977) *Plant Physiol.*, **60**, 407-411.
- 40. Peschek, G. A. (1980) Arch. Microbiol., 125, 123-131.
- 41. Finnegan, P. M., Umbach, A. L., and Wilce, J. A. (2003) *FEBS Lett.*, **555**, 425-430.
- 42. Berry, S., Schneider, D., Vermaas, W. F. J., and Rögner, M. (2002) *Biochemistry*, **41**, 3422-3429.
- Asada, K. (2000) Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 1419-1431.
- 44. Mi, H., Endo, T., Schreiber, U., Ogawa, T., and Asada, K. (1992) *Plant Cell Physiol.*, **33**, 1233-1237.
- 45. Mi, H., Endo, T., Ogawa, T., and Asada, K. (1995) *Plant Cell Physiol.*, **36**, 661-668.
- Joët, T., Cournac, L., Peltier, G., and Havaux, M. (2002) *Plant Physiol.*, 128, 760-769.
- 47. Bendall, D. S., and Manasse, R. S. (1995) *Biochim. Biophys. Acta*, **1229**, 23-38.
- 48. Myers, J. (1987) Photosynth. Res., 14, 55-69.
- 49. Yu, L., Zhao, J., Mühlenhoff, U., Bryant, D. A., and Golbeck, G. H. (1993) *Plant Physiol.*, **103**, 171-180.
- Joliot, P., and Joliot, A. (2002) Proc. Natl. Acad. Sci. USA, 99, 10209-10214.
- 51. Samuilov, V. D., and Fedorenko, T. A. (1999) *Biochemistry* (*Moscow*), **64**, 610-619.
- Takano, M., Takahashi, M.-A., and Asada, K. (1982) Arch. Biochem. Biophys., 218, 369-375.
- Takahashi, M.-A., and Asada, K. (1976) Eur. J. Biochem., 64, 445-452.
- 54. Koulougliotis, D., Kostopoulos, T., Petrouleas, V., and Diner, B. A. (1993) *Biochim. Biophys. Acta*, **1141**, 275-282.
- Keren, N., Kidd, M. J., Penner-Hahn, J. E., and Pakrasi, H. (2002) *Biochemistry*, 41, 15085-15092.
- Samuilov, V. D., Renger, G., Paschenko, V. Z., Oleskin, A. V., Gusev, M. V., Gubanova, O. N., Vasil'ev, S. S., and Barsky, E. L. (1995) *Photosynth. Res.*, 46, 455-465.
- 57. Önnerud, H., Zhang, L., Gellerstedt, G., and Henriksson, G. (2002) *Plant Cell*, **14**, 1953-1962.
- 58. Bhat, V. B., and Madyastha, K. M. (2001) *Biochem. Biophys. Res. Commun.*, **285**, 262-266.
- Nishiyama, Y., Yamamoto, H., Allakhverdiev, S. I., Inaba, M., Yokota, A., and Murata, N. (2001) *EMBO J.*, 20, 5587-5594.
- 60. Allakhverdiev, S. I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, N., Kanesaki, Y., and Murata, N. (2002) *Plant Physiol.*, **130**, 1443-1453.
- 61. Ning, S.-B., Guo, H.-L., Wang, L., and Song, Y.-C. (2002) *J. Appl. Microbiol.*, **93**, 15-28.
- Segovia, M., Haramaty, L., Berges, J. A., and Falkowski, P. G. (2003) *Plant Physiol.*, 132, 99-105.
- 63. Komissarov, G. G. (1995) Khim. Fiz., 14, 20-28.